3-transitive Digraphs

نویسنده

  • César Hernández-Cruz
چکیده

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is 3-transitive if the existence of the directed path (u, v, w, x) of length 3 in D implies the existence of the arc (u, x) ∈ A(D). In this article strong 3-transitive digraphs are characterized and the structure of non-strong 3-transitive digraphs is described. The results are used, e.g, to characterize 3-transitive digraphs that are transitive and to characterize 3-transitive digraphs with a kernel. keywords: digraph, transitive digraph, quasi-transitive digraph, 3-transitive digraph, 3-quasi-transitive digraph, kernel. AMS Subject Classification: 05C20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the structure of strong k-transitive digraphs

A digraph D is k-transitive if the existence of a directed path (v0, v1, . . . , vk), of length k implies that (v0, vk) ∈ A(D). Clearly, a 2-transitive digraph is a transitive digraph in the usual sense. Transitive digraphs have been characterized as compositions of complete digraphs on an acyclic transitive digraph. Also, strong 3 and 4-transitive digraphs have been characterized. In this work...

متن کامل

On the structure of strong 3-quasi-transitive digraphs

In this paper, D = (V (D), A(D)) denotes a loopless directed graph (digraph) with at most one arc from u to v for every pair of vertices u and v of V (D). Given a digraph D, we say that D is 3-quasi-transitive if, whenever u → v → w → z in D, then u and z are adjacent. In [3], Bang-Jensen introduced 3-quasi-transitive digraphs and claimed that the only strong 3quasi-transitive digraphs are the ...

متن کامل

Underlying graphs of 3-quasi-transitive digraphs and 3-transitive digraphs

A digraph is 3-quasi-transitive (resp. 3-transitive), if for any path x0x1 x2x3 of length 3, x0 and x3 are adjacent (resp. x0 dominates x3). César Hernández-Cruz conjectured that if D is a 3-quasi-transitive digraph, then the underlying graph of D, UG(D), admits a 3-transitive orientation. In this paper, we shall prove that the conjecture is true.

متن کامل

4-transitive digraphs I: the structure of strong 4-transitive digraphs

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is transitive if for every three distinct vertices u, v, w ∈ V (D), (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D). This concept can be generalized as follows: A digraph is k-transitive if for every u, v ∈ V (D), the existence of a uv-directed path of length k in D implies that (u, v) ∈...

متن کامل

K-kernels in K-transitive and K-quasi-transitive Digraphs

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k − 1)-kernel. A digraph D is transitive if (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D). This co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2012